## EPA Workshop on Gasoline Sulfur Levels

Loren K. Beard Chrysler Corporation May 12, 1998

### Purpose of the EPA Workshop on Gasoline Sulfur Levels

- The purpose is to find the most cost effective way to provide clean air benefits
- EPA must consider the emissions benefits from the existing fleet as well as new low emissions vehicles
- The purpose is not:
  - to determine whether vehicles meet their certification standards when operated on "real-world" fuels
  - related to NLEV
  - for EPA to "share the burden" of clean air regulation

#### Auto/Oil Sulfur Results



- Reducing sulfur from 450 to 50 ppm reduced HC, CO, and NOx emissions by 18-23%, 19-22%, and 8-12% respectively
- "Tier 1" vehicles showed a greater effect than "Tier 0"
- AQIRP Final Report

### Sulfur Effects on Current and Near-Term Future Vehicles

- CRC and AAMA/AIAM conducted independent studies on the effects of sulfur on LEV and ULEV vehicles
- Base Fuels were similar and sulfur levels ranged from 40 to 600 ppm
- Every vehicle tested experienced large and statistically significant increases in NMHC, CO, and NOx

## AAMA/AIAM vs. CRC Program Comparisons

#### CRC

- 12 Vehicles, 6 models, 5 OEMs
- 4- and 8-cyl production LEVs
- As received (10K miles) and 100K aged
- Non-oxy IndustryAve Fuel at 40,100, 150, 330, and600 ppm S
- California CBG at 40 and 150 ppm S

#### AAMA/AIAM

- 21 vehicles, 21 models, 10 OEMs
- 4-, 6-, and 8-cyl
   PC, LDT1, LDT2,
   and LDT3
- 15 LEVProduction/Production Intent
- 6 ULEVProduction/Production Intent
- 50K or 100K Aged
- California CBG at 40, 100, 150, 330, and 600 ppm S

## Comparison of Sulfur/LEV Programs Means From Ln-Ln Transformation: Aged Catalysts (Maximum Likelihood Estimates)



#### Comparison of Sulfur/LEV Programs Percent Change from Base Fuel: Aged Catalysts

(Maximum Likelihood Estimates)



## Comparison of LEV/Sulfur Test Program Results LEV Fleet Sulfur Effects FTP Composite Results with Aged Components

|                      | CRC   | AAMA/AIAM |
|----------------------|-------|-----------|
| 600 <b>→</b> 40 ppmS |       |           |
| NMHC                 | - 32% | - 29%     |
| CO                   | - 46% | - 47%     |
| NOx                  | - 61% | - 58%     |
|                      |       |           |
|                      |       |           |
| 40 → 600 ppmS        |       |           |
| NMHC                 | + 46% | + 41%     |
| CO                   | + 86% | + 88%     |
| NOx                  | +156% | +133%     |

#### **Comparison of Sulfur/LEV Programs** Change in Emissions Vs. Change in Sulfur (Maximum Likelihood Estimates-Aged Catalysts)



## There are No "Sulfur-Tolerant" Platinum Group Metal Catalysts

- Catalytic reforming has been used by the refining industry for 50 years
  - Despite the cost of reformer feed desulfurization and years of research, reformer feed is still hydrotreated to less than 0.5 ppm sulfur before being exposed to the platinum-based reformer catalyst
  - Even at that, the reformer catalyst cannot be regenerated (sulfur poisoning reversed) under routine operation. The catalyst must be taken off-line, at great expense, for poisoning reversal.

## The Reversibility of Sulfur Poisoning of Automotive Exhaust Catalysts

- Chrysler research shows that reversibility is not achieved under FTP conditions in a LEV-calibrated Neon
- High catalyst temperatures and rich air/fuel ratios are needed to reverse sulfur poisoning
- SFTP will limit rich air/fuel operation
- Because LDTs are designed for maximum catalyst temperatures during towing and heavy work, their catalysts will not be hot enough for reversibility during routine operation
- The lack of sulfur-poisoning reversibility means that national, yearround sulfur control is critical

#### Sulfur Reversibility Study

#### Production Intent Chrysler LEV Multiple Cold FTP Results

#### NMHC vs Sulfur



✓ NMHC sulfur memory effect of 100%. The highest sulfur level the vehicle is operated on may define the TP HC emission levels when rich/hot operation is constrained.

#### Other Gasoline Sulfur Issues

- EPA recognizes in its 211(I)
  regulations that sulfur is a significant
  contributor to engine deposits. Lower
  gasoline sulfur could reduce gasoline
  detergent levels and their side effects
  (combustion chamber deposits), as
  well as reduce costs
- Gasoline sulfur contributes to vehicle particulate and SOx emissions
- "Rotten egg" odor of vehicle exhaust is caused by high sulfur levels, and is a significant customer complaint

# U.S. Gasoline Sulfur Levels Preclude the Introduction of Advanced Vehicle Technologies

- The use of lean NOx catalysis is necessary for the introduction of direct injection gasoline engines to the U.S.
- "Relatively small amounts of sulfur dioxide may severely suppress the NOx adsorption activity of the catalyst." ---DeGussa AG, SAE 962047

#### Other Fuel Issues

- In its staff paper, EPA recognizes the need to control gasoline volatility parameters. Current and proposed ASTM volatility parameters will require compromises of air/fuel calibrations (higher emissions) to assure customer satisfaction on marginal fuels
- Current engine deposit requirements under 211(I) are inadequate to ensure service-life emissions performance or customer expectations, and do not even consider combustion chamber deposits
- Diesel fuels for both light and heavy duty applications will likely require the same sulfur levels (30 ppm) as gasoline

#### Conclusions

- Sulfur is an exhaust catalyst poison which has a much greater effect on LEV and ULEV systems than tier 0 and tier 1 vehicles
- No sulfur tolerant vehicle was found in either the CRC or AAMA/AIAM research programs
- The reduction of gasoline sulfur levels will have immediate benefits for the existing vehicle fleet
- The full emissions-reduction benefit of the NLEV program will not be realized with current 49-state sulfur levels
- The effects of sulfur on exhaust catalysts in the future is unlikely to be reversible